Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).

Identifieur interne : 000530 ( Main/Exploration ); précédent : 000529; suivant : 000531

A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).

Auteurs : Khajamohiddin Syed [États-Unis] ; Aleksey Porollo ; Ying Wai Lam ; Jagjit S. Yadav

Source :

RBID : pubmed:22164262

Descripteurs français

English descriptors

Abstract

The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3-4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp(129) and Leu(324) in the oxidation mechanism of CYP5136A3. Replacing Trp(129) with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83-90%) was observed for the W129L mutation as compared to W129F (28-41%). However, the two mutations showed a comparable loss (60-67%) in C9-AP oxidation. Replacement of Leu(324) with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp(129) and Leu(324) are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates.

DOI: 10.1371/journal.pone.0028286
PubMed: 22164262
PubMed Central: PMC3229547


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).</title>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porollo, Aleksey" sort="Porollo, Aleksey" uniqKey="Porollo A" first="Aleksey" last="Porollo">Aleksey Porollo</name>
</author>
<author>
<name sortKey="Lam, Ying Wai" sort="Lam, Ying Wai" uniqKey="Lam Y" first="Ying Wai" last="Lam">Ying Wai Lam</name>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22164262</idno>
<idno type="pmid">22164262</idno>
<idno type="doi">10.1371/journal.pone.0028286</idno>
<idno type="pmc">PMC3229547</idno>
<idno type="wicri:Area/Main/Corpus">000465</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000465</idno>
<idno type="wicri:Area/Main/Curation">000465</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000465</idno>
<idno type="wicri:Area/Main/Exploration">000465</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).</title>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porollo, Aleksey" sort="Porollo, Aleksey" uniqKey="Porollo A" first="Aleksey" last="Porollo">Aleksey Porollo</name>
</author>
<author>
<name sortKey="Lam, Ying Wai" sort="Lam, Ying Wai" uniqKey="Lam Y" first="Ying Wai" last="Lam">Ying Wai Lam</name>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (chemistry)</term>
<term>Chromatography, Liquid (methods)</term>
<term>Cytochrome P-450 Enzyme System (chemistry)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (physiology)</term>
<term>Endocrine Disruptors (pharmacology)</term>
<term>Leucine (chemistry)</term>
<term>Ligands (MeSH)</term>
<term>Mass Spectrometry (methods)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxygen (chemistry)</term>
<term>Oxygen (metabolism)</term>
<term>Phanerochaete (metabolism)</term>
<term>Phenols (chemistry)</term>
<term>Pichia (metabolism)</term>
<term>Polycyclic Aromatic Hydrocarbons (chemistry)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Spectrometry, Mass, Electrospray Ionization (methods)</term>
<term>Tryptophan (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (composition chimique)</term>
<term>Chromatographie en phase liquide (méthodes)</term>
<term>Cytochrome P-450 enzyme system (composition chimique)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (physiologie)</term>
<term>Hydrocarbures aromatiques polycycliques (composition chimique)</term>
<term>Leucine (composition chimique)</term>
<term>Ligands (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxygène (composition chimique)</term>
<term>Oxygène (métabolisme)</term>
<term>Perturbateurs endocriniens (pharmacologie)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Phénols (composition chimique)</term>
<term>Pichia (métabolisme)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Spectrométrie de masse (méthodes)</term>
<term>Spectrométrie de masse ESI (méthodes)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Tryptophane (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acids</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Leucine</term>
<term>Oxygen</term>
<term>Phenols</term>
<term>Polycyclic Aromatic Hydrocarbons</term>
<term>Tryptophan</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxygen</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acides aminés</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Hydrocarbures aromatiques polycycliques</term>
<term>Leucine</term>
<term>Oxygène</term>
<term>Phénols</term>
<term>Tryptophane</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
<term>Pichia</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Mass Spectrometry</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxygène</term>
<term>Phanerochaete</term>
<term>Pichia</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Chromatographie en phase liquide</term>
<term>Spectrométrie de masse</term>
<term>Spectrométrie de masse ESI</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Perturbateurs endocriniens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Endocrine Disruptors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Ligands</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Ligands</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Structure secondaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3-4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp(129) and Leu(324) in the oxidation mechanism of CYP5136A3. Replacing Trp(129) with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83-90%) was observed for the W129L mutation as compared to W129F (28-41%). However, the two mutations showed a comparable loss (60-67%) in C9-AP oxidation. Replacement of Leu(324) with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp(129) and Leu(324) are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22164262</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).</ArticleTitle>
<Pagination>
<MedlinePgn>e28286</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0028286</ELocationID>
<Abstract>
<AbstractText>The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3-4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp(129) and Leu(324) in the oxidation mechanism of CYP5136A3. Replacing Trp(129) with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83-90%) was observed for the W129L mutation as compared to W129F (28-41%). However, the two mutations showed a comparable loss (60-67%) in C9-AP oxidation. Replacement of Leu(324) with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp(129) and Leu(324) are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Khajamohiddin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porollo</LastName>
<ForeName>Aleksey</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lam</LastName>
<ForeName>Ying Wai</ForeName>
<Initials>YW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yadav</LastName>
<ForeName>Jagjit S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 ES010210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES006096</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30-ES006096</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 ES015543</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01ES10210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052244">Endocrine Disruptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011084">Polycyclic Aromatic Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052244" MajorTopicYN="N">Endocrine Disruptors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010843" MajorTopicYN="N">Pichia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011084" MajorTopicYN="N">Polycyclic Aromatic Hydrocarbons</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22164262</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0028286</ArticleId>
<ArticleId IdType="pii">PONE-D-11-15067</ArticleId>
<ArticleId IdType="pmc">PMC3229547</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1964 Feb;90(2):391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5836889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jul;63(7):2906-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2005 Jun;50(6):292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Sep 3;399(4):492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 Nov;32(6):927-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(13):4398-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 2000 Feb;13(2):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Sep;75(17):5570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2004 Mar;94(3):262-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2000 Feb;28(2):110-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10640505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 1994 Aug 15;83(1-2):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8062229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2002 Feb;56(3):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11792434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Jan;151(Pt 1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Oct 1;40(19):6131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2008 Aug 5;43(2):205-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 May 31;38(3):294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15943904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Aug 28;40(34):10150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 1981 Jan;11(3):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7018664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 1997 Nov-Dec;19(5-6):324-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9451829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jan 5;267(1):83-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1730627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 1998 Apr;26(4):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9531523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 15;58(3):596-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15617063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2000 May;293(2):585-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10773032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 1982;25(4):333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7157409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Pharmacokinet. 2006 Aug;21(4):257-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 May 1;509(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2010 Oct 18;23(10):1617-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20843008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1976 Sep 15;98(19):5988-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">965633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2010 Aug 15;180(1-3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2010 Jan 5;183(1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17311915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2007 Mar;67(4):770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2008 Dec;36(12):2582-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 1996 Feb 15;1(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21781657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1981 Jan;19(1):168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7207460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C. 1981;70(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6117407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W662-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Jul;62(7):2554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Oct;63(10):3919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9327556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Jun 14;6:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1995;90(1):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15091504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 Mar 1;507(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jan 1;409(1):92-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Sep 15;39(18):7202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16201649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1998 Jun;36(14):2977-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9734274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1978;27(14):1865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">708468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 10;279(37):38091-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):5736-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21147782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2001;12(6):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2002 Mar;61(3):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2005 Apr;5(6-7):527-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Nov;57(11):3310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1781688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1995 Jun;103 Suppl 5:41-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8565908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2004 Apr;15(2):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 Apr;44(5):423-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19241257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Sep;55(9):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2802607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1986 Feb;57(2):203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3955791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 1996 Jan-Feb;9(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8723313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia. 1972 Oct 15;28(10):1129-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4117670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1997 May;167(5):310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Lam, Ying Wai" sort="Lam, Ying Wai" uniqKey="Lam Y" first="Ying Wai" last="Lam">Ying Wai Lam</name>
<name sortKey="Porollo, Aleksey" sort="Porollo, Aleksey" uniqKey="Porollo A" first="Aleksey" last="Porollo">Aleksey Porollo</name>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000530 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000530 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22164262
   |texte=   A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22164262" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020